МБОУ «БРЯНСКИЙ ГОРОДСКОЙ ЛИЦЕЙ №2 ИМЕНИ М.В. ЛОМОНОСОВА»

ВЛИЯНИЕ ВРЕДНЫХ ГАЗООБРАЗНЫХ ВЕЩЕСТВ (SO₂, CO, NO_x, ЛОС) НА ДЕТСКИЙ ОРГАНИЗМ

Авторы работы:

Васекин Алексей, Салупаева Татьяна (atlanka@bk.ru), Чернышева Нина (nincher@list.ru), учащиеся 10 "А" класса Научные руководители:

Напреенко Татьяна Алексеевна, учитель химии, Корсаков Антон Вячеславович, учитель экологии, доцент, доктор биологических наук

Оглавление:

- 1. Введение.
- 2. Основная часть:
 - 2.1Общие сведения о выбранных газах и об их влиянии на здоровье людей;
 - 2.2Оценка загрязнения воздуха в Брянской области;
 - 2.3.Сравнение заболеваемости детей 7-9 лет самого токсичного района Брянской области с заболеваемостью детей 1-2 классов Брянского городского лицея №2.
- 3 Выводы.

Введение

В данной работе исследуется влияние газообразных веществ на развитие детского организма. Здоровье подрастающего поколения, в некоторой степени, зависит от качества воздуха. В 18 в. английским ученым Дж. Блэком был установлен экспериментальным путем состав воздуха, в который входят: азот (78%), кислород (21%), аргон (0,9%), углекислый газ (0,03%) и другие газообразные вещества (0,07%). Но в современном мире число промышленных предприятий и автомобилей растет с каждым годом, а вместе с ним возрастает концентрация вредных газообразных соединений, изменяется состав воздуха (уменьшается количество кислорода за счет появления других газообразных веществ - отходов предприятий и автомобилей). Безусловно, изменение содержания газов, составляющих воздух, и превышение ПДК токсичных газообразных веществ негативно влияет на здоровье и самочувствие растущего организма.

Актуальность: Нас заинтересовала данная проблема, т.к. мы столкнулись с большим количеством информации о росте числа аллергических и астматических заболеваний у детей из-за сложившихся экологически неблагоприятных условий окружающей среды. Наше внимание как учащихся химико-биологического класса более всего привлекли токсичные газообразные оксиды (SO₂, CO, NO_x) и ЛОС (летучие органические соединения), т.к. именно эти вещества содержатся в наибольшей концентрации среди примесей воздуха, а значит, оказывают значительное влияние на самочувствие людей.

Цели работы следующие:

- 1) изучить влияние атмосферного загрязнения окружающей среды на состояние здоровья детского населения Брянской области.
- 2) исследовать зависимость заболеваний дыхательной системы детей от содержания в атмосфере вредных газообразных веществ.

Гипотеза: мы предполагаем, что содержание вредных для здоровья людей газов в атмосфере Брянской области превышает допустимые нормы, в свою очередь, это приводит к возникновению заболеваний органов дыхания у детей 7-9 лет.

Задачи исследования:

- 1) изучить источники информации по данной проблеме;
- 2) провести анализ заболеваний у детей самого токсически загрязненного района Брянской области;
- 3) сравнить показатели заболеваемости детей самого токсичного района с аналогичными показателями учащихся нашего лицея;
 - 4) сделать вывод о состоянии окружающей среды Брянской области.

Методы исследования:

- 1) Синтез;
- 2) Анализ;
- 3) Статистика.

2. Основная часть

2.1 Общие сведения о выбранных газах и об их влиянии на здоровье людей;

Азота окислы (N_xO_v) .

Причины появления в атмосфере: выхлопные газы автомобилей.

Общий характер действия меняется в зависимости от содержания в газовой смеси различных окислов азота. В основном отравление протекает по раздражающему типу действия. При контакте окислов азота с влажной поверхностью лёгких образуются HNO₃ и HNO₄, поражающие альвеолярную ткань, что приводит к отёку лёгких и сложным рефлекторным расстройствам. С другой стороны, при отравлении окислами азота в крови образуются нитраты и нитриты. Последние, действуя непосредственно на артерии, вызывают расширение сосудов и снижение кровяного давления. Попадая в кровь, нитриты превращают оксигемоглобин в метгемоглобин. Повреждение эритроцитов приводит к появлению метгемоглобина в моче и к кислородной недостаточности. В концентрациях, не превышающих ПДК, окислы азота вызывают (даже при трёхчасовом рабочем дне) у подростков, проходящих практику на заводе, изменения в жировом и белковом обмене, а также повышение заболеваемости верхних дыхательных путей. У подвергшихся воздействию окислов азота В высоких концентрациях желтоватое окрашивание волос на голове (спереди), ноздрей и кистей рук.

Двуокись серы (сернистый ангидрид, SO_2).

<u>Причины появления в атмосфере:</u> отходы промышленного производства, выбрасывающиеся в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке металлов и производстве серной кислоты.

Раздражает дыхательные пути, вызывая спазм бронхов и увеличение сопротивления дыхательных путей. Влажная поверхность слизистых

поглощает SO_2 , затем последовательно образуются H_2SO_3 и H_2SO_4 . Общее действие заключается в нарушении углеводного обмена; угнетении окислительных процессов в головном мозге, печени, селезёнке, мышцах; снижении содержания витаминов B_1 и C. Раздражает кроветворные органы. Способствует образованию метгемоглобина; вызывает изменения в эндокринных органах, костной ткани; нарушает генеративную функцию.

Оксид углерода (угарный газ, СО)

Причины появления в атмосфере: выхлопные газы.

Вытесняет кислород из оксигемоглобина (HbO) крови, образуя карбоксигемоглобин (COHb), содержание кислорода может снижаться с 18-20% до 8 %. Угарный газ способен оказывать непосредственное токсическое действие на клетки, нарушая тканевое дыхание и уменьшая потребление тканями кислорода. Угнетает активность в печени, сердце и мозге. Угарный газ влияет на углеводный обмен, повышая уровень сахара в крови и вызывая появление сахара в моче.

ЛОС (летучие органические соединения)

<u>Причина появления в атмосфере:</u> растения, ежегодно выделяющие 350 млн тонн C_5H_8 ; выбросы предприятий (бензол, хлороформ, толуол, фенолы и т.д.). ЛОС являются источником множества проблем, в том числе мутаций, нарушений дыхания и раковых заболеваний. 1

2.2 Оценка химического загрязнения воздуха Брянской области

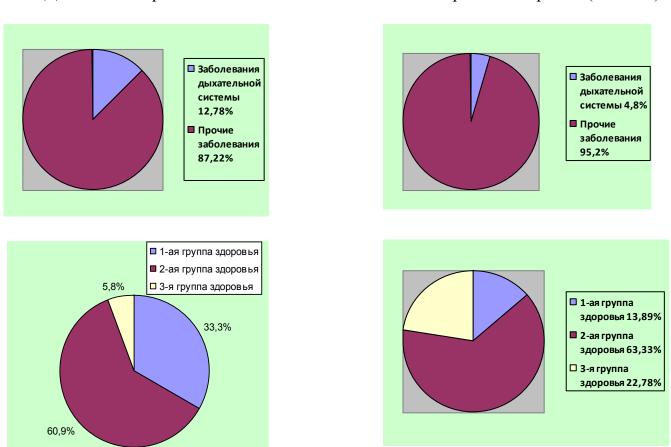
Брянская область вместе с городом Брянском является крупным промышленным центром Российской Федерации. На территории области и города работают около **1200** предприятий, выпускающих различную

¹ Зависимость показателей здоровья от условий окружающей среды: кандидатская диссертация/ Е.В. Ноздрачева;

продукцию. Основные отрасли предприятий – это машиностроение, металлообработка, **химическая промышленность**. Безусловно, такое число заводов и фабрик выбрасывают в атмосферу множество вредных химических соединений (NO_x, CO, SO₂, ЛОС и др.), а также большое количество автомобилей загрязняют окружающую среду выхлопными газами - все это не может не сказаться на экологической обстановке Брянской области. В рамках научно-исследовательской работы мы решили оценить химическое загрязнение воздуха на территории нашей области, рассмотрев все её районы. Данные по содержанию вредных газообразных соединений в атмосфере муниципальных районов Брянской области приведены в таблице (См. Приложение в конце работы)

Таким образом, из таблицы выявлено, что загрязненность Брянской области в целом не на много превышает ПДК вредных оксидов и ЛОС. Так же стоит выделить самый токсичный район — Дятьковский. В нем содержание SO_2 , CO, NO_x и ЛОС в десятки раз превосходит ПДК. К такому загрязнению атмосферы данного района привела активная деятельность крупных промышленных предприятий, которыми известен район: завод «Дятьковский хрусталь», «Дятьковский завод Лесстройдеталь», мебельная фабрика «Катюша» и др. 2 Экологически благополучным районом в Брянской области следует считать Клетнянский район. В воздухе этого района содержание вредных газообразных веществ самое наименьшее, т.к. на его территории находятся предприятия исключительно пищевой и текстильной промышленности. У таких фабрик и заводов число выбросов в атмосферу невелико. Также в Клетнянском районе много лесных массивов, что способствует сохранности чистоты воздуха в этом районе.

² Комплексная эколого-гигиеническая оценка изменений состава среды как фактора риска для здоровья населения: автореферат докторской диссертации/ А.В. Корсаков


2.3. Сравнение заболеваемости детей 7-9 лет самого токсичного района Брянской области с заболеваемостью детей 1-2 классов Брянского городского лицея №2

В этом пункте нашей работы мы приведем статистику заболеваемости детей 7-9 лет в Дятьковском районе и сравним с показателями детей 1-2 классов нашего лицея.

Данная статистика будет представлена в виде диаграмм.

Дятьковский район

Бежицкий район, г. Брянск (БГЛ№2)

Рис. 1. Сравнительная оценка состояния здоровья мальчиков и девочек 7-9 лет, проживающих в Дятьковском районе и Бежицком районе города Брянска на примере нашего учебного заведения.

Несмотря на то, что Дятьковский район является самым токсичным, показатели заболеваемости детей 7-9 лет в несколько раз меньше показателей заболеваемости детей 1-2 классов лицея №2. Здесь наблюдается некое противоречие и несоответствие малой заболеваемости детей Дятьковского района с его неблагополучными экологическими условиями и высокой заболеваемостью детей БГЛ№2 с экологической обстановкой, которая не является столь неблагоприятной (табл. №1). Такая сложившаяся ситуация является объектом дальнейшего изучения. Мы можем предположить, что на организм учеников лицея в большей степени влияют не оксиды серы, азота, углерода и ЛОС, а городская пыль, тяжелые металлы и их соединения. Ведь здание нашего учебного заведения расположено в центре Бежицкого района города Брянска, на пересечении двух оживленных улиц, где за день проезжают тысячи легковых и грузовых автомобилей, общественный транспорт. К тому же, в пятистах метрах от лицея расположен Брянский машиностроительный завод, в которого входят частицы тяжелых металлов. Возможно, отходы вышеперечисленное оказывает негативные воздействия на здоровье детей Брянского городского лицея №2 им. М.В. Ломоносова. Кроме того, статистика по самому неблагоприятному району Брянской области – Дятьковскому, охватывает всех детей, в том числе, проживающих в сельской местности, где концентрация вредных примесей в воздухе значительно ниже в связи отсутствием оживленных транспортных магистралей и предприятий.

3. Выводы

Работая над проектом, мы сделали несколько выводов.

Во-первых, основными факторами, загрязняющими атмосферу Брянской области, являются выбросы автомобилей и предприятий. На территории области распространены отрасли машиностроения и металлообработки. Литейные цеха на машиностроительных предприятиях являются наиболее крупными источниками

пылегазовыделения. При производстве тонны чугунных отливок выделяется 150-330 кг СО, около 1,5 кг SO₂, 25-60 кг пыли, оксиды азота, фенол, аммиак и другие вредные вещества. При производстве на металлообрабатывающих предприятиях выделяются в атмосферу аэрозоли щелочей, кислот, солей металлов, а также пары аммиака, оксида азота, хлористого и фтористого водорода, цианистый водород. А выхлопные выбросы состоят из угарного газа, оксидов азота и углеводородов и прочих вредных веществ. Из приведенных выше данных следует, что охрана окружающей среды, в частности снижение уровня загрязнений атмосферы, в настоящее время является наиболее актуальной экологической и социально-экономической проблемой.

Во-вторых, ходе исследования мы установили, заболевания ЧТО дыхательных путей у детей 1-2 классов нашего лицея выше, чем высокотоксическом районе Брянской области (Дятьковсковском районе). Возможно, это связано с находящейся перед зданием БГЛ №2 дорогой, следовательно, и большим количеством выхлопных газов, а также близким расположением Брянского машиностроительного завода. Это противоречие является поводом для более глубокого исследования.

В заключение мы приведем слова российского эколога Николая Фёдоровича Реймерса: «Не природе нужна наша защита. Это нам необходимо её покровительство: чистый воздух, чтобы дышать, кристальная вода, чтобы пить, вся природа, чтобы жить».

Список используемой литературы:

- 1. Комплексная эколого-гигиеническая оценка изменений состава среды как фактора риска для здоровья населения: автореферат докторской диссертации/ А.В. Корсаков;
- 2. Зависимость показателей здоровья от условий окружающей среды: кандидатская диссертация/ E.B. Ноздрачева;
- 3. Келлер А.А., Кувакин В.И. Медицинская экология. СПб., 1998.
- 4. Лучкевич В.С., Захарченко М.П., Петленко В.П. Экология и здоровье: время действий. СПб., 1998;
- 5. Государственный доклад «О состоянии окружающей природной среды по Брянской области в 2006 году». Брянск, 2007;
- 6. Ракитин И.А., Пацюк Н.А. Научно-методические подходы к гигиеническому обоснованию размеров санитарно-защитных зон на территориях мегаполиса //Здоровье населения и среда обитания. Информационный бюллетень. 2006;
- 7. Тотай А.В. Экология: учебное пособие для студентов высших учебных заведений;
- 8. Михалёв, В.П. Сравнительная оценка роста и физического развития детского и подросткового населения Брянской области на территориях с резкими экосистемными изменениями состава среды;
- 9. Сайт «Википедия»;
- 10. Сайт «Экология крупных городов России».

Приложение

Табл. №1. Токсическая загрязненность среды без дифференцировки территорий по мощности воздействия факторов экологического неблагополучия

	Среднегодовые токсические нагрузки на жителя				
Районы Брянской области	(2000-2009 гг.), кг/чел/год				
	Диоксид серы (SO ₂)	Оксид углерода (CO)	Оксиды азота (NO _x)	Летучие органические соединения (ЛОС)	
1	2	3	4	5	
г. Брянск	1,4	5,6	6,6	1,9	
г. Клинцы	0,1	3,2	2,6	1,2	
г. Новозыбков	0,6	2,4	2,4	0,8	
г. Сельцо	0,4	6,7	5,1	0,5	
Брасовский	0,5	1,6	1,6	0,7	
Брянский	0,8	2,0	2,4	9,8	
Выгоничский	0	1,4	1,6	0,1	
Гордеевский	0	1,1	1,3	0,2	
Дубровский	0	1,2	1,5	0,6	
Дятьковский	36,3	68,6	59,9	6,3	
Жирятинский	0,1	1,3	1,2	0,1	
Жуковский	1,3	1,7	2,0	0,5	
Злынковский	0,4	0,9	1,5	0,2	
Карачевский	0	1,6	1,9	0,9	
Клетнянский	0,5	0,5	0,6	0,1	
Климовский	1,0	0,5	1,6	0,1	
Клинцовский	0	3,3	5,9	0,8	

Комаричский	0,5	1,4	2,1	1,3
Красногорский	0,1	0,5	0,6	0,1
Мглинский	0,1	0,5	0,7	0,3
Навлинский	0,4	1,2	1,4	0,6
Новозыбковский	0	0	0,2	0,4
Погарский	0,2	1,1	1,3	1,8
Почепский	0	1,0	1,1	5,1
Рогнединский	0	0,9	1,0	0
Севский	3,1	1,1	1,1	0,2
Стародубский	0,1	1,1	1,4	9,0
Суземский	0,1	1,0	1,2	0,2
Суражский	0,4	1,4	1,2	0,3
Трубчевский	0,1	1,2	8,2	0,5
Унечский	0,8	1,8	2,3	6,4

3

³ Комплексная эколого-гигиеническая оценка изменений состава среды как фактора риска для здоровья населения: автореферат докторской диссертации/ А.В. Корсаков